Telegram Group & Telegram Channel
В каком случае вы будете наблюдать изменение метрики specificity?

Specificity отражает то, насколько часто классификатор правильно не относит объекты к классу.

Метрика будет изменяться, если:

▫️изменится количество правильно классифицированных отрицательных случаев.
▫️изменится количество ложноположительных (FP) результатов.
▫️изменится порог решения классификатора.

▶️ Например, у нас есть группа пациентов, проходящих тест на определённое заболевание. Specificity определяется как доля правильно идентифицированных здоровых пациентов (TN) от общего числа действительно здоровых пациентов (TN + FP). Предположим, что из 100 пациентов 20 действительно болеют, а 80 здоровы. Тест правильно определил 70 здоровых как здоровых (TN) и ошибочно определил 10 здоровых как больных (FP). В этом случае метрика будет равна 0.875. Затем тест улучшили, и он правильно идентифицирует 75 здоровых пациентов как здоровых (TN) и 5 здоровых пациентов как больных (FP). Specificity выросла до 0.9375.

#машинное_обучение



tg-me.com/ds_interview_lib/201
Create:
Last Update:

В каком случае вы будете наблюдать изменение метрики specificity?

Specificity отражает то, насколько часто классификатор правильно не относит объекты к классу.

Метрика будет изменяться, если:

▫️изменится количество правильно классифицированных отрицательных случаев.
▫️изменится количество ложноположительных (FP) результатов.
▫️изменится порог решения классификатора.

▶️ Например, у нас есть группа пациентов, проходящих тест на определённое заболевание. Specificity определяется как доля правильно идентифицированных здоровых пациентов (TN) от общего числа действительно здоровых пациентов (TN + FP). Предположим, что из 100 пациентов 20 действительно болеют, а 80 здоровы. Тест правильно определил 70 здоровых как здоровых (TN) и ошибочно определил 10 здоровых как больных (FP). В этом случае метрика будет равна 0.875. Затем тест улучшили, и он правильно идентифицирует 75 здоровых пациентов как здоровых (TN) и 5 здоровых пациентов как больных (FP). Specificity выросла до 0.9375.

#машинное_обучение

BY Библиотека собеса по Data Science | вопросы с собеседований




Share with your friend now:
tg-me.com/ds_interview_lib/201

View MORE
Open in Telegram


Библиотека собеса по Data Science | вопросы с собеседований Telegram | DID YOU KNOW?

Date: |

Export WhatsApp stickers to Telegram on iPhone

You can’t. What you can do, though, is use WhatsApp’s and Telegram’s web platforms to transfer stickers. It’s easy, but might take a while.Open WhatsApp in your browser, find a sticker you like in a chat, and right-click on it to save it as an image. The file won’t be a picture, though—it’s a webpage and will have a .webp extension. Don’t be scared, this is the way. Repeat this step to save as many stickers as you want.Then, open Telegram in your browser and go into your Saved messages chat. Just as you’d share a file with a friend, click the Share file button on the bottom left of the chat window (it looks like a dog-eared paper), and select the .webp files you downloaded. Click Open and you’ll see your stickers in your Saved messages chat. This is now your sticker depository. To use them, forward them as you would a message from one chat to the other: by clicking or long-pressing on the sticker, and then choosing Forward.

Библиотека собеса по Data Science | вопросы с собеседований from us


Telegram Библиотека собеса по Data Science | вопросы с собеседований
FROM USA